Usando su modelo de piramide, con los siguientes puntos dibuje el polígono correspondiente y aplique las siguientes transformaciones:
p0=(2,2) , p1(7,2), p2(7,7), p3(2,7)
Escriba todos los cálculos realizados.
a) Vector Traslación (-2,-2)
b) Escalación (0.5,0.5)
c) Rotacion 45grados eje z
tomando el p0 como base.
Trastacion.
P' = P+T
P0'=(2,2)+(-2,-2) = 0,0
P1'=(7,2)+(-2,-2) = 5,0
P2'=(7,7)+(-2,-2) = 5,5
P3'=(2,7)+(-2,-2) = 0, 5
Escalación:
Escalción P0 = (1,1)
x' = x * Sx = (2)*(0.5) = (1)
y' = y * Sy = (2)*(0.5) = (1)
Escalción P1 = (3.5,1)
x' = x * Sx = (7)*(0.5) = (3.5)
y' = y * Sy = (2)*(0.5) = (1)
Escalción P2 = (3.5,3.5)
x' = x * Sx = (7)*(0.5) = (3.5)
y' = y * Sy = (7)*(0.5) = (3.5)
Escalción P3 = (1,3.5)
x' = x * Sx = (2)*(0.5) = (1)
y' = y * Sy = (7)*(0.5) = (3.5)
Rotación:
Rotación P0=(2,2)
X' = xCos ☼ - YSin☼= 2Cos (45) - 2Sin(45)=0
y' = xSin ☼ - YCos☼= 2Sin(45)- 2Cos(45)=0
Rotación P1=(7,2)
X' = xCos ☼ - YSin☼=7Cos(45)- 2Sin(45)=3.5355
y' = xSin ☼ - YCos☼= 7Sin(45)- 2Cos(45)=3.5355
Rotación P2=(7,7)
X' = xCos ☼ - YSin☼=7Cos(45)- 7Sin(45)=0
y' = xSin ☼ - YCos☼= 7Sin(45)- 7Cos(45)=0
Rotación P3=(2,7)
X' = xCos ☼ - YSin☼=2Cos(45)- 7Sin(45)= -3.5355
y' = xSin ☼ - YCos☼= 2Sin(45)- 7Cos(45)=-3.5355
No hay comentarios:
Publicar un comentario